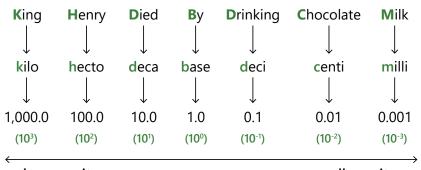
NUMBER BASICS

Rational Numbers Integers Whole Numbers Natural Numbers

Each number system is a subset another.

A rational number is also a real number, a real number is also a complex number, etc.


Number Class	Definition	Examples
Natural numbers	The number 1 or any number obtained by adding 1 to it one or more times.	1, 2, 3, 4, 5,
Whole Numbers	Whole numbers do not include fractions or decimal parts and is a positive integer or zero.	0, 1, 2, 3, 4, 5,
Integers	Any whole number or its opposite.	, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5,
Rational numbers	A number can that be expressed as a ratio or fraction.	• 2/10.6 • 3/10 • 2.957
Real Numbers	A number that has no imaginary part. All real numbers can be located on a number line.	• -92 • 5/9 • √2
Complex Numbers	$a+bi$ where a and b are real numbers and i (imaginary number) is a formal square root of -1 ($i=\sqrt{-1}$, $i^2=-1$)	 -1 + 2i 7 - 9i -6i

Place Value

Place	thousands	hundreds	tens	ones	tenths	hundredths	thousandths
Value	1,000	100	10	1	0.1	0.01	0.001

METRIC CONVERSIONS

Metric units are multiples of 10s. To convert to a larger unit, divide numbers by base of 10s. To convert to a smaller unit, multiply numbers by base of 10s.

larger units

smaller units

DISTANCE

1 ft = 12 in

1 in = 2.54 cm

1 yd = 3 ft

 $1 \text{ m} \approx 3.28 \text{ ft} \approx 1.09 \text{ yd}$

 $1 \text{ mi} = 5,280 \text{ ft} \approx 1.61 \text{ km}$

CAPACITY

 $1 \text{ oz} \approx 28.35 \text{ g}$

1 cup = 8 oz

2 cups = 1 pint

2 pints = 1 quart

4 quarts = 1 gallon

1 gallon ≈ 3.8 L

WEIGHT

1 lb = 16 oz

 $1 \text{ kg} \approx 2.2 \text{ lb} \approx 35.27 \text{ oz}$

 $1 t = 2,000 lb \approx 907.19 kg$

TEMPERATURE

$$^{\circ}F = \frac{9}{5}(^{\circ}C) + 32$$

$$^{\circ}C = \frac{9}{5}(^{\circ}F) - 32$$

FACTORS

What is a factor?

A whole number is a factor of another whole number if it divides it evenly.

Greatest common factor (GCF)

The greatest common factor of two or more whole numbers is the largest number that is a factor of them all. 7: 1, 7

28: 1, 2, 7, 14

GCF: 7

MULTIPLES

What is a multiple?

A whole number is a multiple if it is the result of multiplying another whole number by an integer.

Least Common Multiple (LCM)

The least common multiple of two or more whole numbers is the smallest number that is a multiple of them all.

3: 3, 6, 9, 12, 15, 18, <mark>21,</mark> 24

7: 7, 14, 21, 28, 35, 42, 49, 56

LCM: 21

Multiples of 3

×	1	2	3	4	5	6	7	8	multiplication
1	1	2	3	4	5	6	7	8	3 × 1 = 3
2	2	4	6	8	10	12	14	16	3 × 2 = 6
3	3	6	9	12	15	18	21	24	3 × 3 = 9
4	4	8	12	16	20	24	28	32	3 × 4 = 12
5	5	10	15	20	25	30	35	40	3 × 5 = 15
6	6	12	18	24	30	36	42	48	3 × 6 = 18
7	7	14	21	28	35	42	49	56	3 × 7 = 21
8	8	16	24	32	40	48	56	64	3 × 8 = 24

Multiples of 7

×	1	2	3	4	5	6	7	8	multiplication
1	1	2	3	4	5	6	7	8	7 × 1 = 7
2	2	4	6	8	10	12	14	16	7 × 2 = 14
3	3	6	9	12	15	18	21	24	7 × 3 = 21
4	4	8	12	16	20	24	28	32	7 × 4 = 28
5	5	10	15	20	25	30	35	40	7 × 5 = 35
6	6	12	18	24	30	36	42	48	7 × 6 = 42
7	7	14	21	28	35	42	49	56	7 × 7 = 49
8	8	16	24	32	40	48	56	64	7 × 8 = 56

GED® MATH CRAM SHEET

FRACTIONS

Proper Fraction

Numerator is less than the denominator

Improper Fraction

8 Numerator is greater3 than the denominator

Mixed Number

 $3\frac{1}{8}$ Whole number and proper fraction together

Add or subtract fractions with different denominators

- 1. Change to equivalent fractions with common denominators using a scale factor
- 2. Add or subtract following the rules for fractions with the same denominators

$$\frac{A}{B} + \frac{C}{D} = \frac{AD}{BD} + \frac{BC}{BD} = \frac{AD + BC}{BD}$$

$$\frac{A}{B} - \frac{C}{D} = \frac{AD}{BD} - \frac{BC}{BD} = \frac{AD - BC}{BD}$$

Add or subtract fractions with the same denominators

- 1. Add or subtract the numerators
- 2. Keep the denominator the same
- 3. Simplify if possible

$$\frac{A}{B} + \frac{C}{B} = \frac{A+C}{B}$$

$$\frac{A}{B} - \frac{C}{B} = \frac{A - C}{B}$$

Multiply fractions

- 1. Multiply the numerators
- 2. Multiply the denominators
- 3. Simplify

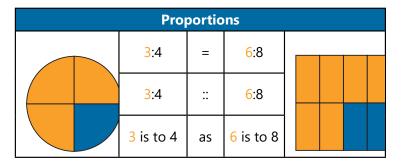
$$\frac{A}{B} \times \frac{C}{D} = \frac{A \times C}{B \times D}$$

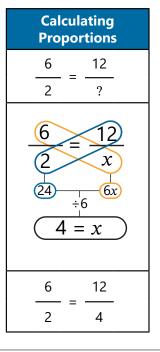
Divide fractions

- 1. Keep the first fraction as is
- 2. Change from division to multiplication
- 3. Flip the second fraction to its reciprocal
- 4. Follow multiplication of fractions rules

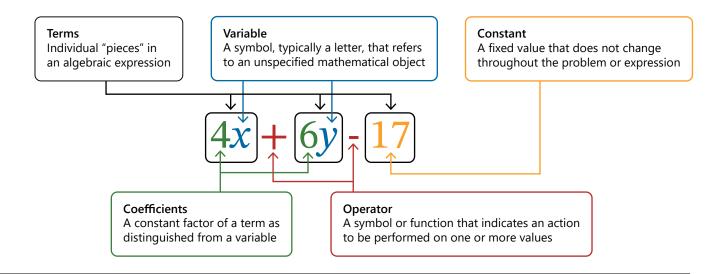
$$\frac{A}{B} \div \frac{C}{D} = \frac{A}{B} \times \frac{D}{C} = \frac{A \times D}{B \times C}$$

Convert Mixed Number


$$4\frac{2}{8} = \frac{(4 \times 8) + 2}{8} = \frac{34}{8} = \frac{17}{4}$$


Keep the original denominator when converting a mixed number to an impromper fraction.

Simplify if needed.


RATIOS AND PROPORTIONS

Ratios					
	Part to	part	Part to	whole	
	2:1	1:2	2:3	1:3	
	2/1	1/2	<mark>2</mark> /3	1/3	
	2 to 1	1 to 2	2 to 3	1 to 3	

ALGEBRAIC EXPRESSION

FOIL METHOD

Using the FOIL method on binomials: (x + 2) and (x - 3)

F	Multiply the first terms of each binomial	(x+2)(x+(-3))	\rightarrow	(x)(x)	$=x^2$
0	Multiply the outer terms	(x + 2)(x + (-3))	\rightarrow	(x)(-3)	=-3x
1	Multiply the inner terms	(x+2)(x+(-3))	\rightarrow	(2)(x)	=2x
L	Multiply the last terms of each binomial	(x + 2)(x + (-3))	\rightarrow	(2)(-3)	= -6

SOLVING LINEAR EQUATIONS

1. Distribute

Distribute factors across terms in parentheses.

$$2 \times (3x + 2) + 2x + 8 = 14 + 5x$$

Equivalent Equation
$$6x + 4 + 2x + 8 = 14 + 5x$$

2. Collect Terms

Check if there are like terms to combine.

$$6x + 4 + 2x + 8 = 14 + 5x$$

$$12$$

Equivalent Equation
$$8x + 12 = 14 + 5x$$

3. Move Variables

Gather all *x*-terms on one side of the equation by performing inverse operations on both sides of the equation.

$$8x - 5x + 12 = 14 + 5x - 5x$$

Equivalent Equation
$$3x + 12 = 14$$

4. Isolate

Isolate the variable by performing inverse operations on both sides of the equation

Operation		Inverse Operation
Addition	+	 Subtraction
Subtraction	-	+ Addition
Multiplication	X	÷ Division
Division	÷	× Multiplication

Subtraction

$$3x + \underline{12} = 14H - 12 = 2$$

Equivalent Equation

$$3x = 2$$

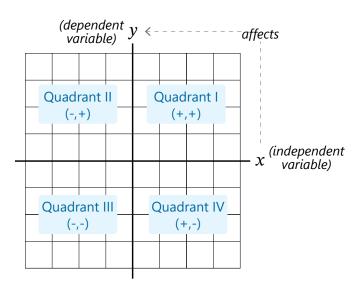
Division

$$3x = 2H \div 3 = \frac{2}{3}$$

$$\div 3 = x$$

Answer
$$x = \frac{2}{3}$$

5. Check


Substitute the solution back into the original equation to verify it works.

$$2 \times (3 \times \frac{2}{3} + 2) + 2 \times \frac{2}{3} + 8$$

$$\frac{52}{3}$$

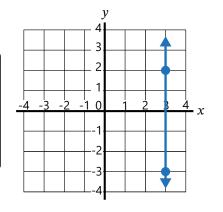
$$\frac{14+5\frac{2}{3}}{\frac{52}{3}}$$

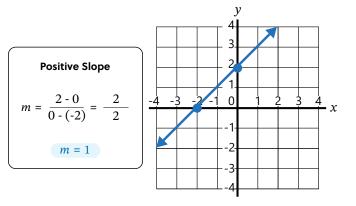
SLOPE AND LINEAR EQUATIONS

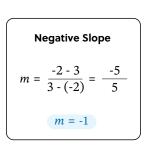
Slope
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{rise}{run}$$
Slope Intercept Form
$$y = mx + b$$

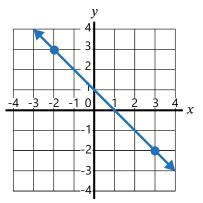
$$m = slope \\ b = y - intercept$$
Distance Formula
$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

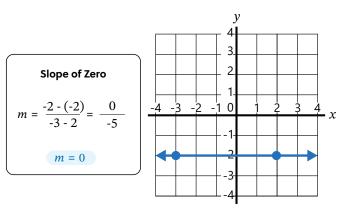
$$M = slope Form$$

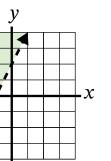

$$y - y_1 = m(x - x_1)$$


$$m = slope \\ (x_1, y_1) = point coordinates$$


$$M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

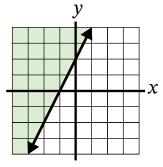

Undefined Slope
$$m = \frac{-3 - 2}{3 - 3} = \frac{-5}{0}$$


$$m = undefined$$



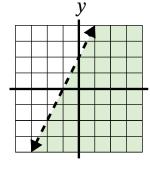
GRAPHING LINEAR INEQUALITIES

Greater Than


>

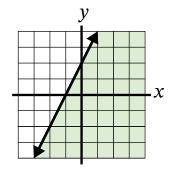
y > 2x + 2

Greater Than or Equal To


 \geq

 $y \ge 2x + 2$

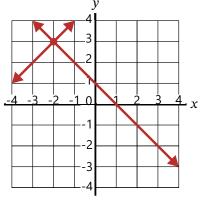
Less Than


<

y < 2x + 2

Less Than or Equal To

≤

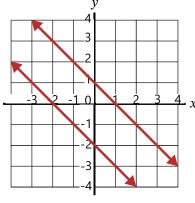

 $y \le 2x + 2$

SYSTEMS OF EQUATIONS

One Solution

$$y = -x + 1$$

$$y = x + 5$$

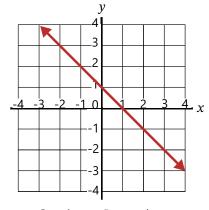


Consistent Independent

No Solutions

$$y = -x + 1$$

$$y = -x - 2$$

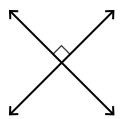


Inconsistent

Infinitely Many Solutions

$$y = -x + 1$$

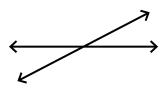
$$3y = -3x + 3$$


Consistent Dependent

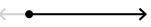
LINES

Line

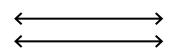
a set of points that extends infinitely in two opposite directions


Perpendicular

lines that intersect at right angles


Segment

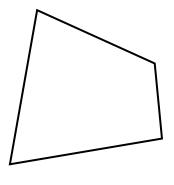
is a portion of a line that has definite endpoints


Intersecting

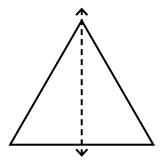
lines that have exactly one point in common

Ray

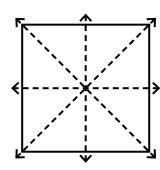
a portion of a line that extends infinitely from a single point on that line in one direction along the line



Parallel

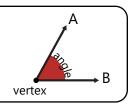

are lines in the same plane that have no points in common and never meet

LINE OF SYMMETRY


A line that divides a figure or object into congruent parts that are mirror images of each other across the line is called a line of symmetry. An object may have no lines of symmetry, one line of symmetry, or multiple lines of symmetry.

None

One



Multiple

ANGLES

An angle is formed when two lines or line segments meet at a point.

A vertex is the point at which two segments or rays meet to form an angle.

Right

An angle with a degree measure of exactly 90°

Straight

An angle with a degree measure of exactly 180°

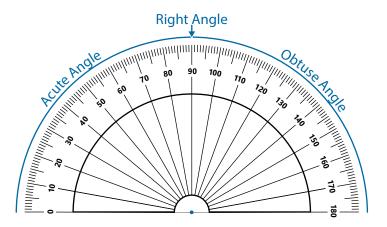
An angle with a degree measure less than 90°

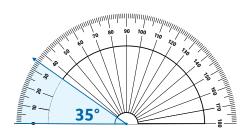
Obtuse

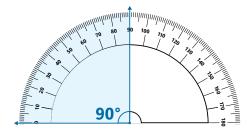
An angle with a degree measure greater than 90° but less than 180°

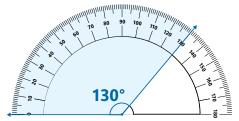
Complementary

Two angles whose sum is exactly 90°

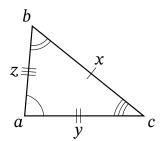

Supplementary

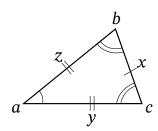



Two angles whose sum is exactly 180°

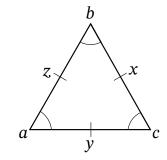

PROTRACTORS

A protractor is primarily used to measure how wide or narrow an angle is, in degrees (from 0° to 180°).

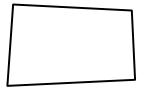


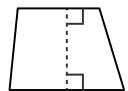

POLYGONS

Triangles

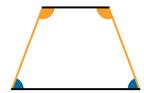

The sum of the interior angles of any triangle is always 180 degrees.

Scalene TriangleNo equal side lengths or angles


Isosceles TriangleTwo equal side lengths and angles


Equilateral TriangleThree equal side lengths and angles

Quadrilaterals


The sum of the interior angles of any simple quadrilateral is always 360 degrees.

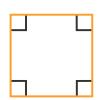
TrapeziumNo sides are parallel and opposite angles are equal

TrapezoidAt least one pair of opposite sides are parallel

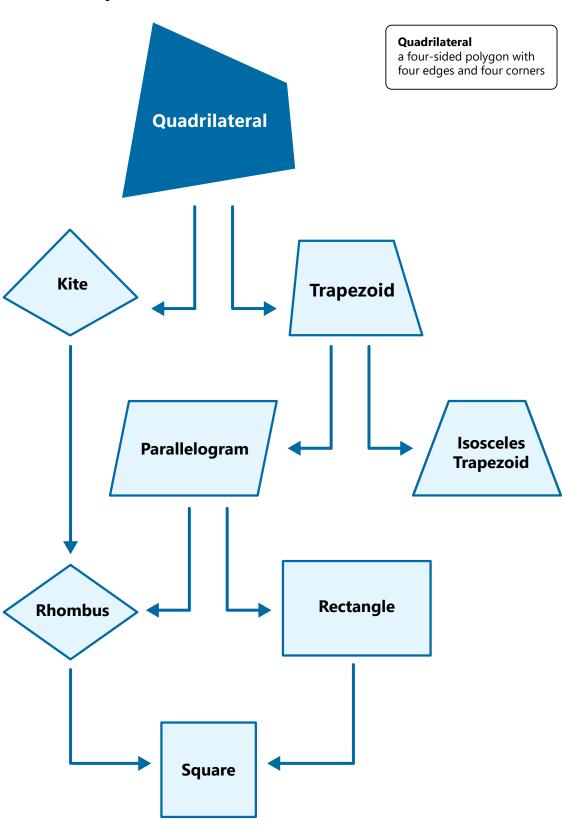
TrapezoidOne pair of opposite sides are parallel, and the base angles are equal in measure

Isosceles

Parallelogram Two pairs of parallel sides


KiteTwo pairs of adjacent sides are of equal length

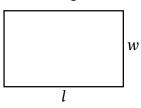
Rhombus
All four sides are of equal length and opposite angles are equal



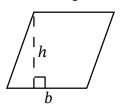
RectangleAll four angles are right angles

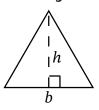
SquareAll four sides are of equal length, and all four angles are right angles

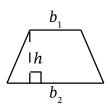
Quadrilateral Hierarchy



AREA


Square


Rectangle


Parallelogram

Triangle

Trapezoid

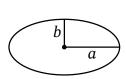
$$A = l^2$$

$$A = lw$$

$$A = bh$$

$$A = \frac{1}{2}bh$$

$$A = \frac{1}{2}(b_1 + b_2)h$$


Rhombus

Circle

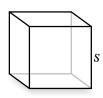
Ellipse

Perimeter

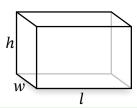
The sum of all sides of a shape

Circumference

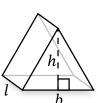
The distance around a circle ($C=2\pi r$)


$$A = \frac{1}{2} \left(\mathbf{d}_{1} \times \mathbf{d}_{2} \right)$$

$$A=\pi r^2$$


$$A = \pi ab$$

VOLUME AND SURFACE AREA


Cube

Rectangular Prism

Triangular Prism

 $V = \frac{b \times h \times l}{2}$

Cylinder

Cone

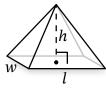
$$V = s^3$$

$$V = l \times w \times h$$

$$V = \pi r^2 h$$

$$V = \frac{\pi r^2 h}{3}$$

$$SA = 6s^2$$


$$SA = 2(lw + lh + hw)$$

$$SA = lsa + 2 (area of base)$$

$$SA = 2\pi r(r+h)$$

$$SA = \pi rs + \pi r^2$$

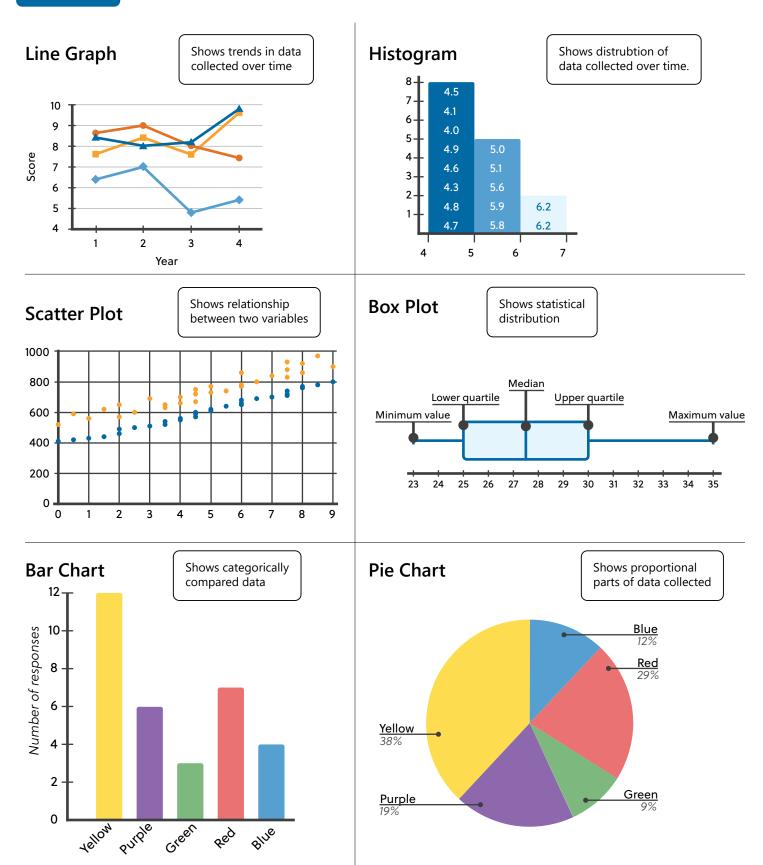
Rectangular Pyramid

Sphere

$$V = \frac{l \times w \times h}{3} \qquad V = \frac{4}{3} \pi r^3$$

$$SA = lsa + area of base$$

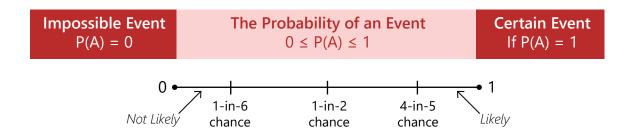
$$SA = 4\pi r^2$$


LSA (Lateral Surface Area)

The sides of a three-dimensional shape, excluding any bases

Base

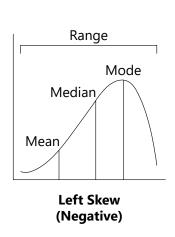
The face of a shape perpendicular to the direction height is measured

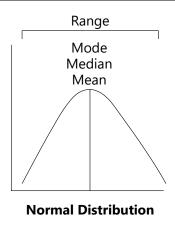

CHARTS

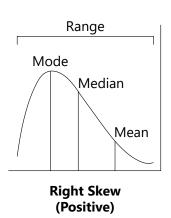
Color

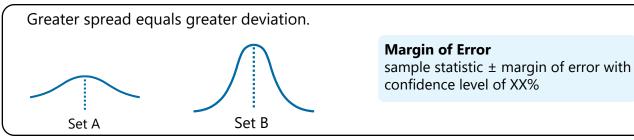
PROBABILITY

 $P(A) = \frac{\text{Number of acceptable outcomes}}{\text{Number of possible outcomes}}$

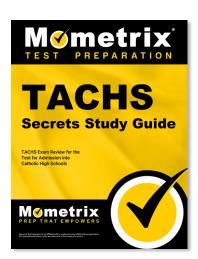

STATISTICS


Mean sum of all items total number of items


Range (Spread) Distance between smallest and largest item


Mode Most/common item

MedianMiddle item when ordered from least to greatest



ADDITIONAL FORMULAS

Formula Name	Formula
Geometric Sequence	$a_n = a_1 \times r^{n-1}$ $a_n = $ the value of the nth term $a_1 = $ the value of the initial term $r = $ the common ratio $n = $ the number of terms
Arithmetic Sequence	$a_n = a_1 + (n-1)d$ $a_n = $ the value of the nth term $a_1 = $ the value of the initial term $n = $ the number of terms $d = $ the common difference between terms

Need more resources? Scan the QR codes below to check out test prep materials from Mometrix that are specifically designed to help you ace the TACHS.

TACHS Study Guide

You can also visit https://www.mometrix.com/academy/tachs-test/ to take a TACHS practice test.