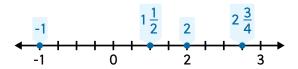
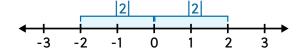

NUMBER CLASSIFICATION



Each number system is a subset another.

A rational number is also a real number, a real number is also a complex number, etc.

Number Class	Definition	Examples
Natural numbers	The number 1 or any number obtained by adding 1 to it one or more times.	1, 2, 3, 4, 5,
Whole Numbers	Whole numbers do not include fractions or decimal parts and is a positive integer or zero.	0, 1, 2, 3, 4, 5,
Integers	Any whole number or its opposite.	, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5,
Rational numbers	A number can that be expressed as a ratio or fraction.	• 2/10.6 • 3/10 • 2.957
Real Numbers	A number that has no imaginary part. All real numbers can be located on a number line.	• -92 • 5/9 • √2
Complex Numbers	$a + bi$ where a and b are real numbers and i (imaginary number) is a formal square root of -1 ($i = \sqrt{-1}$, $i^2 = -1$)	-1 + 2i7 - 9i-6i


NUMBER LINES

Standard Number Line

Number lines may have a point for zero and may show negative numbers on the left side of the line.

Any positive numbers are placed on the right side of the line

Absolute Value

Absolute value is the distance away from zero a number is on the number line. It is always positive and is written

For example, the absolute value of 2 is written as |2|.

MATHEMATICAL SYMBOLS

Phrase				
equal, is, was, will be, has, costs, gets to, is the same as, becomes	=			
times, of, multiplied by, product of, twice, doubles, halves, triples	×			
divided by, per, ratio of/to, out of				
plus, added to, sum, combined, and, more than, totals of				
subtracted from, less than, decreased by, minus, difference between				
what, how much, original value, how many, a number, a variable				

Lesser Known Symbols

The Golden Ratio: φ Inifinity: ∞ Euler's Number: e Universal Quantifier: ∀ Membership Sign: ∈

FACTORS

What is a factor?

A whole number is a factor of another whole number if it divides it evenly.

Greatest common factor (GCF)

The greatest common factor of two or more whole numbers is the largest number that is a factor of them all. 7: 1, 7

28: 1, 2, 7, 14

GCF: 7

Factor Tree

MULTIPLES

What is a multiple?

A whole number is a multiple if it is the result of multiplying another whole number by an integer.

Least Common Multiple (LCM)

The least common multiple of two or more whole numbers is the smallest number that is a multiple of them all. 3: 3, 6, 9, 12, 15, 18, 21, 24 7: 7, 14, 21, 28, 35, 42, 49, 56

LCM: 21

Multiples of 3

×	1	2	3	4	5	6	7	8	multiplication
1	1	2	3	4	5	6	7	8	3 × 1 = 3
2	2	4	6	8	10	12	14	16	3 × 2 = 6
3	3	6	9	12	15	18	21	24	3 × 3 = 9
4	4	8	12	16	20	24	28	32	3 × 4 = 12
5	5	10	15	20	25	30	35	40	3 × 5 = 15
6	6	12	18	24	30	36	42	48	3 × 6 = 18
7	7	14	21	28	35	42	49	56	3 × 7 = 21
8	8	16	24	32	40	48	56	64	3 × 8 = 24

Multiples of 7

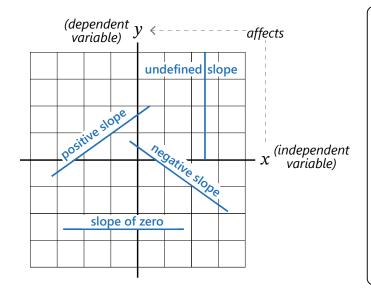
×	1	2	3	4	5	6	7	8	multiplication
1	1	2	3	4	5	6	7	8	7 × 1 = 7
2	2	4	6	8	10	12	14	16	7 × 2 = 14
3	3	6	9	12	15	18	21	24	7 × 3 = 21
4	4	8	12	16	20	24	28	32	7 × 4 = 28
5	5	10	15	20	25	30	35	40	7 × 5 = 35
6	6	12	18	24	30	36	42	48	7 × 6 = 42
7	7	14	21	28	35	42	49	56	7 × 7 = 49
8	8	16	24	32	40	48	56	64	7 × 8 = 56

RATIOS

Ratios of Two Items

Items	Ratio	Fraction	Written	Simplified Ratio
6 oranges, 8 apples	6:8	6/8	6 oranges to 8 apples	3:4
8 trains, 14 cars	8:14	8/14	8 trains to 14 cars	4:7
4 feet, 3 feet	4:3	4/3	4 feet to 3 feet	4:3

SCIENTIFIC NOTATION


The coefficient must be greater than or equal to 1 and less than 10

Scientific Notation	Moving The Decimal	New Number
1 × 10°	1	1
1.3 × 10 ¹	1.3	13
1.34 × 10 ²	1.34	134
7.38 × 10 ⁹	7.38000000	7,380,000,000
1 × 10 ⁻¹	01.	0.1
1 × 10 ⁻²	001.	0.01
5.5 × 10 ⁻⁷	0000005.5	0.00000055

RULES OF EXPONENTS

Property	Description			
$a^1 = a$	Any number to the power of 1 is equal to itself			
$1^n = 1$	The number 1 raised to any power is equal to 1			
$a^{0} = 1$	Any number raised to the power of 0 is equal to 1			
$a^n \times a^m = a^{n+m}$	Add exponents to multiply powers of the same base number			
$a^n \div a^m = a^{n-m}$	Subtract exponents to divide powers of the same base number			
$(a^n)^m = a^{n \times m}$	When a power is raised to a power, the exponents are multiplied			
$(a \times b)^n = a^n \times b^n$	Multiplication operations inside parentheses can be raised to a power			
$(a \div b)^{n} = a^{n} \div b^{n}$	Division operations inside parentheses can be raised to a power			
$a^{-n} = 1/a^n$	A negative exponent is the same as the reciprocal of a positive exponent			

SLOPE AND LINEAR EQUATIONS

Slope
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{rise}{run}$$

Slope Intercept Form

$$y = mx + b$$

m = slopeb = y-intercept

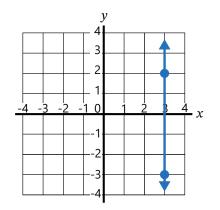
Distance Formula

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Point-Slope Form

$$y - y_1 = m(x - x_1)$$

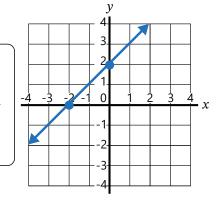
m = slope $(x_1, y_1) = \text{point coordinates}$


Midpoint Formula

$$M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

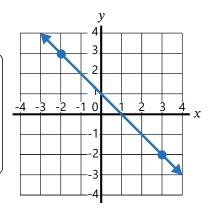
Undefined Slope

$$m = \frac{-3 - 2}{3 - 3} = \frac{-5}{0}$$


m = undefined

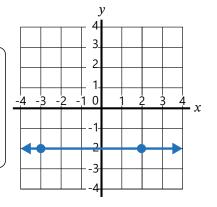
Positive Slope

$$m = \frac{2 - 0}{0 - (-2)} = \frac{2}{2}$$


m = 1

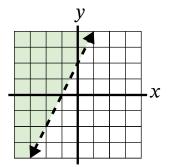
Negative Slope

$$m = \frac{-2 - 3}{3 - (-2)} = \frac{-5}{5}$$


m = -1

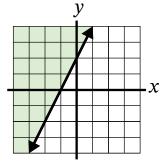
Slope of Zero

$$m = \frac{-2 - (-2)}{-3 - 2} = \frac{0}{-5}$$


m = 0

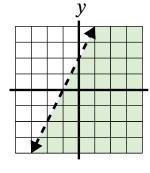
GRAPHING LINEAR EQUATIONS

Greater Than


>

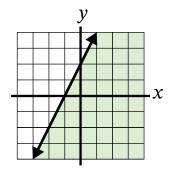
y > 2x + 2

Greater Than or Equal To


 \geq

 $y \ge 2x + 2$

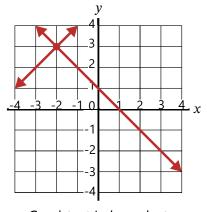
Less Than


<

y < 2x + 2

Less Than or Equal To

 \leq

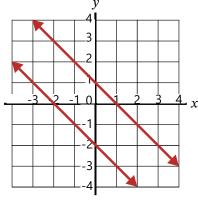

 $y \le 2x + 2$

SYSTEMS OF EQUATIONS

One Solution

$$y = -x + 1$$

$$y = x + 5$$

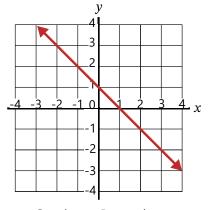


Consistent Independent

No Solutions

$$y = -x + 1$$

$$y = -x - 2$$

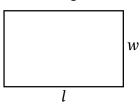


Inconsistent

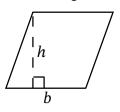
Infinitely Many Solutions

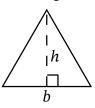
$$y = -x + 1$$

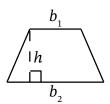
$$3y = -3x + 3$$


Consistent Dependent

AREA


Square


Rectangle


Parallelogram

Triangle

Trapezoid

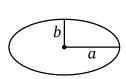
$$A = l^2$$

$$A = lw$$

$$A = bh$$

$$A = \frac{1}{2}bh$$

$$A = \frac{1}{2}(b_1 + b_2)h$$


Rhombus

Circle

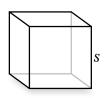
Ellipse

Perimeter

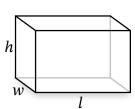
The sum of all sides of a shape

Circumference

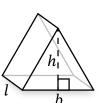
The distance around a circle ($C=2\pi r$)


 $A = \frac{1}{2} (\mathbf{d}_1 \times \mathbf{d}_2)$

$$A=\pi r^2$$


$$A = \pi ab$$

VOLUME AND SURFACE AREA


Cube

Rectangular Prism

Triangular Prism

Cylinder

Cone

$$V = s^3$$

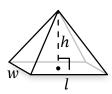
$$V = l \times w \times h$$

$$V = \frac{b \times h \times l}{2}$$

$$V = \pi r^2 h$$

$$V = \frac{\pi r^2 h}{3}$$

$$SA = 6s^2$$


$$SA = 2(lw + lh + hw)$$

$$SA = lsa + 2 (area of base)$$

$$SA = 2\pi r(r+h)$$

$$SA = \pi rs + \pi r^2$$

Rectangular Pyramid

Sphere

$$V = \frac{l \times w \times h}{3}$$

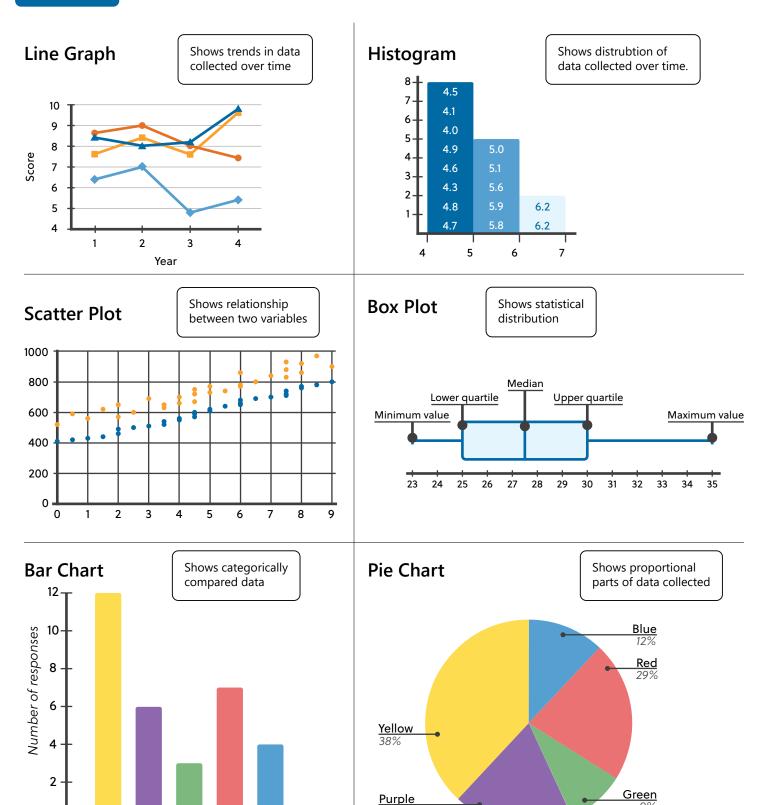
$$V = \frac{4}{3} \pi r^3$$

$$SA = lsa + area of base$$

$$SA = 4\pi r^2$$

LSA (Lateral Surface Area)

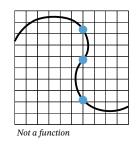
The sides of a three-dimensional shape, excluding any bases

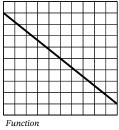

The face of a shape perpendicular to the direction height is measured

CHARTS

0

Purple


Color



FUNCTIONS

Function	Formula
Constant Functions	f(x) = a
The Identity Function	f(x) = x
Linear Functions	f(x) = ax + b
The Squaring Function	$f(x) = x^2$
Quadratic Functions	$f(x) = ax^2 + bx + c$
Polynomial Functions	$f(x) = a^n x^n + a^{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$
Rational Functions	f(x) = P(x)/Q(x)
The Square Root Function	$f(x) = \sqrt{x}$

A function is a relation between a set of inputs and a set of outputs where each input is related to exactly one output.

QUADRATIC EQUATION

An equation where the variable xrepresents an unknown number, and a_i b, and c represent known numbers, where $a \neq 0$

Quadratic Formula: Standard Form

$$ax^2 + bx + c = 0$$

Quadratic Formula: Equivalent Form

$$x = \frac{-\mathbf{b} \pm \sqrt{\mathbf{b}^2 - 4a\mathbf{c}}}{2a}$$

POLYNOMIALS

Polynomials are mathematical expressions consisting of variables, coefficients, and constants combined using addition, subtraction, and multiplication.

Polynomial Type	Number of Terms	Example
Monomial	One term	$5x^3$
Binomial	Two terms	x + 2
Trinomial	Three terms	$x^2 + 3x - 4$

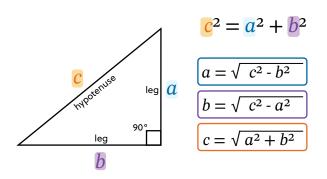
PERMUTATION AND COMBINATION

Permutation

An arrangement of a specific number of a set of objects in a specific order.

$$_{n}P_{r}=\frac{n!}{(n-r)!}$$

Combination

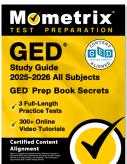

No restrictions regarding the order of the elements.

$$_{n}C_{r}=\frac{n!}{r!(n-r)!}$$
 $_{n}C_{r}=\frac{_{n}P_{r}}{r!}$

$$_{n}C_{r}=\frac{^{n}P_{r}}{r!}$$

n = the number of objects available r = the number of objects selected

PYTHAGOREAN THEOREM


OTHER FORMULAS

Formula Name	Formula
Simple Interest	I = Prt ($I = \text{interest}, P = \text{principal}, r = \text{rate}, t = \text{time}$)
Distance Formula	d = rt ($d = $ distance, $r = $ rate, $t = $ time)
Total Cost	total cost = (units) × (unit price)

Need more resources? Scan the QR codes below to check out test prep materials from Mometrix that are specifically designed to help you ace the GED.

You can also visit https://www.mometrix.com/academy/ged-practice-test/ to take a GED practice test.

GED Study Guide

GED Flashcards

2,100+ **Practice Questions**

Review Videos

Study Lessons

320+ **Flashcards**

Get 20% Off **Online GED Course** Use Code: GED20