NUMBER CLASSIFICATION

Rat	Rational Numbers						
	Integers						
		Whole Numbers					
		Natural Numbers					

Number Class	Definition	Examples
Natural numbers	The number 1 or any number obtained by adding 1 to it one or more times.	1, 2, 3, 4, 5,
Whole Numbers	Whole numbers do not include fractions or decimal parts and is a positive integer or zero.	0, 1, 2, 3, 4, 5,
Integers	Any whole number or its opposite.	, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5,
Rational numbers	A number can that be expressed as a ratio or fraction.	• 2/10.6 • 3/10 • 2.957
Real Numbers	A number that has no imaginary part. All real numbers can be located on a number line.	• -92 • 5/9 • √2
Complex Numbers	a + bi where a and b are real numbers and i (imaginary number) is a formal square root of -1 ($i = \sqrt{-1}$, $i^2 = -1$)	 -1 + 2i 7 - 9i -6i

Each number system is a subset another.

A rational number is also a real number, a real number is also a complex number, etc.

NUMBER LINES

Standard Number Line

Number lines may have a point for zero and may show negative numbers on the left side of the line.

Any positive numbers are placed on the right side of the line.

Absolute Value

Absolute value is the distance away from zero a number is on the number line. It is always positive and is written |x|.

For example, the absolute value of 2 is written as [2].

MATHEMATICAL SYMBOLS

Phrase	Symbol
equal, is, was, will be, has, costs, gets to, is the same as, becomes	=
times, of, multiplied by, product of, twice, doubles, halves, triples	×
divided by, per, ratio of/to, out of	÷
plus, added to, sum, combined, and, more than, totals of	+
subtracted from, less than, decreased by, minus, difference between	-
what, how much, original value, how many, a number, a variable	<i>x</i> , <i>n</i> , etc.

Lesser Known Symbols

The Golden Ratio: φ Inifinity: ∞ Euler's Number: e Universal Quantifier: \forall Membership Sign: \in

PERCENTS, FRACTIONS, AND DECIMALS

RATIOS AND PROPORTIONS

Ratios of Two Items

ltems	Ratio	Fraction	Written	Simplified Ratio
6 oranges, 8 apples	6:8	⁶ /8	6 oranges to 8 apples	3:4
8 trains, 14 cars	8:14	8⁄14	8 trains to 14 cars	4:7
4 feet, 3 feet	4:3	4⁄3	4 feet to 3 feet	4:3

Ratios						
	Part to	part	Part to whole			
	2:1	1:2	<mark>2:</mark> 3	1:3		
	<mark>2/1</mark>	1/2	<mark>2</mark> /3	1/3		
	2 to 1	1 to 2	2 to 3	1 to 3		

Proportions									
	<mark>3</mark> :4	=	<mark>6</mark> :8						
	<mark>3:4</mark>	::	<mark>6</mark> :8						
	3 is to 4	as	<mark>6</mark> is to 8						

FACTORS

What is a factor?

A whole number is a factor of another whole number if it divides it evenly.

Greatest common factor (GCF)

The greatest common factor of two or more whole numbers is the largest number that is a factor of them all. 7: 1, 7 28: 1, 2, 7, 14 GCF: 7

MULTIPLES

What is a multiple?

A whole number is a multiple if it is the result of multiplying another whole number by an integer.

Least Common Multiple (LCM)

The least common multiple of two or more whole numbers is the smallest number that is a multiple of them all. 3: 3, 6, 9, 12, 15, 18, <mark>21,</mark> 24 7: 7, 14, <mark>21,</mark> 28, 35, 42, 49, 56 LCM: **21**

Multiples of 3

×	1	2	3	4	5	6	7	8	multiplication
1	1	2	3	4	5	6	7	8	3 × 1 = 3
2	2	4	6	8	10	12	14	16	3 × 2 = 6
3	3	6	9	12	15	18	21	24	3 × 3 = 9
4	4	8	12	16	20	24	28	32	3 × 4 = 12
5	5	10	15	20	25	30	35	40	3 × 5 = 15
6	6	12	18	24	30	36	42	48	3 × 6 = 18
7	7	14	21	28	35	42	49	56	3 × 7 = 21
8	8	16	24	32	40	48	56	64	3 × 8 = 24

Multiples of 7

	aitip	162							
×	1	2	3	4	5	6	7	8	multiplication
1	1	2	3	4	5	6	7	8	7 × 1 = 7
2	2	4	6	8	10	12	14	16	7 × 2 = 14
3	3	6	9	12	15	18	21	24	7 × 3 = 21
4	4	8	12	16	20	24	28	32	7 × 4 = 28
5	5	10	15	20	25	30	35	40	7 × 5 = 35
6	6	12	18	24	30	36	42	48	7 × 6 = 42
7	7	14	21	28	35	42	49	56	7 × 7 = 49
8	8	16	24	32	40	48	56	64	7 × 8 = 56

PERMUTATION AND COMBINATION

n = the number of objects available *r* = the number of objects selected

Permutation An arrangement of a specific number of a set of objects in a specific order.

$$_{n}P_{r}=\frac{n!}{(n-r)!}$$

Combination No restrictions regarding the order of the elements.

MOmetrix test preparation

SCIENTIFIC NOTATION

The coefficient must be greater than or equal to 1 and less than 10

Scientific Notation	Moving The Decimal	New Number
1 × 10°	1	1
1.3 × 10 ¹	1.3	13
1.34 × 10 ²	1.34	134
7.38 × 10 ⁹	7.38000000	7,380,000,000
1 × 10 ⁻¹	01.	0.1
1 × 10 ⁻²	001.	0.01
5.5 × 10 ⁻⁷	0000005.5	0.0000055

RULES OF EXPONENTS

Property	Description
$a^1 = a$	Any number to the power of 1 is equal to itself
$1^n = 1$	The number 1 raised to any power is equal to 1
$a^0 = 1$	Any number raised to the power of 0 is equal to 1
$a^n \times a^m = a^{n+m}$	Add exponents to multiply powers of the same base number
$a^n \div a^m = a^{n - m}$	Subtract exponents to divide powers of the same base number
$(a^n)^m = a^{n \times m}$	When a power is raised to a power, the exponents are multiplied
$(a \times b)^n = a^n \times b^n$	Multiplication operations inside parentheses can be raised to a power
$(a \div b)^{n} = a^{n} \div b^{n}$	Division operations inside parentheses can be raised to a power
$a^{-n} = 1/a^n$	A negative exponent is the same as the reciprocal of a positive exponent

SLOPE AND LINEAR EQUATIONS

Slope $\frac{y_2 - y_1}{x_2 - x_1} = \frac{rise}{run}$					
Slope Intercept Form y = mx + b m = slope b = y-intercept	Distance Formula $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$				
Point-Slope Form $y - y_1 = m(x - x_1)$ m = slope $(x_1, y_1) = \text{point coordinates}$	Midpoint Formula $M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$				

y

GRAPHING LINEAR EQUATIONS

SYSTEMS OF EQUATIONS

QUADRATIC EQUATION

An equation where the variable xrepresents an unknown number, and a, b, and c represent known numbers, where $a \neq 0$ Quadratic Formula: Standard Form

 $ax^2 + bx + c = 0$

Quadratic Formula: Equivalent Form

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

FUNCTIONS

Function	Formula
Constant Functions	f(x) = b, where the slope is zero
The Identity Function	f(x) = x, where the output value and input value are the same and the line passes through the origin
Linear Functions	f(x) = mx + b
The Squaring Function	$f(x) = x^2$, where the vertex is at the origin
Quadratic Functions	$f(x) = ax^2 + bx + c$
Polynomial Functions	$f(x) = a^{n}x^{n} + a^{n-1}x^{n-1} + \dots + a_{2}x^{2} + a_{1}x + a_{0}$
Rational Functions	$f(x) = P(x)/Q(x)$, where $p(x)$ and $q(x)$ are polynomials and $q(x) \neq 0$
The Square Root Function	$f(x) = \sqrt{x}$

A function is a relation between a set of inputs and a set of outputs where each input is related to exactly one output.

Composites

The composite of two functions f and g, simply means that the output of the second function is used as the input of the first.

It's important to note that the process is not always commutative like addition or multiplication expressions. It can be commutative, but most often this is not the case.

j	f(x) = 5x + 4				
f(g(x))	=f(x-2)				
	= 5(x - 2) + 4				
	= 5x - 10 + 4				
	= 5x - 6				

g(x) = x - 2					
g(f(x))	=g(5x+4)				
	=(5x+4)-2				
	= 5x - 2				

Transformations of Functions

Function Notation	Transformation Types	Coordinate Point Change		
f(x) + d	vertical translation up d units	$(x,y) \rightarrow (x,y+d)$		
<i>f</i> (<i>x</i>) - <i>d</i>	vertical translation down d units	$(x,y) \rightarrow (x,y - d)$		
f(x+c)	horizontal translation left c units	$(x,y) \rightarrow (x - c,y)$		
<i>f</i> (<i>x</i> - <i>c</i>)	horizontal translation right c units	$(x,y) \to (x+c,y)$		
-f(x)	reflect over x-axis	$(x,y) \rightarrow (x,-y)$		
f(-x)	reflect over y-axis	$(x,y) \rightarrow (-x,y)$		

 $(f \circ g)(x) = f(g(x))$

and

 $(g \circ f)(x) = g(f(x))$

MATRICES

Matrix Definition	1
A matrix (plural: matrices) is a	
rectangular array of numbers or	
variables, often called elements,	
which are arranged in columns	
and rows	

Scalar A number 11

A list of numbers $\begin{bmatrix}
0\\
3\\
-2\\
11
\end{bmatrix}
\begin{bmatrix}
1 & 0 & -1
\end{bmatrix}$

Vector

Matrix An array of numbers $\begin{bmatrix} 1 & 0 & -1 \\ 2 & 3 & 4 \\ 0 & -2 & 5 \\ 10 & 11 & 8 \end{bmatrix}$

Matrix Addition or Subtraction

	a	b		g	h		$a \pm g$	$b \pm h$ $d \pm j$ $f \pm l$]
n	с	d	±	i	j	=	$c \pm i$	$d \pm j$	
	e	f		k	l		$e \pm k$	$f \pm l$	

Scalar Multiplication

$$n\left[\begin{array}{ccc}a & b & c\\ d & e & f\end{array}\right] = \left[\begin{array}{ccc}na & nb & nc\\ nd & ne & nf\end{array}\right]$$

Matrix Multiplication

$\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \begin{bmatrix} g & h \\ i & j \\ k & l \end{bmatrix} = \begin{bmatrix} ag + bi + ck & ah + bj + cl \\ dg + ei + fk & dh + ej + fl \end{bmatrix}$	$\left[\begin{array}{ccc} a & b & c \\ d & e & f \end{array}\right]$	gh ij kl	=	ag dg	+ +	bi ei	+ +	ck fk	ah dh	+ +	bj ej	+ +	cl fl	
---	--	----------------	---	----------	--------	----------	--------	----------	----------	--------	----------	--------	----------	--

ADDITIONAL FORMULAS

Formula Name	Formula
Simple Interest	I = Prt (I = interest, P = principal, r = rate, t = time)
Distance Formula	d = rt (d = distance, r = rate, t = time)
Total Cost	total cost = (units) × (unit price)
Geometric Sequence	$a_n = a_1 \times r^{n-1}$ a_n = the value of the nth term a_1 = the value of the initial term r = the common ratio n = the number of terms
Arithmetic Sequence	$a_n = a_1 + (n-1)d$ a_n = the value of the nth term a_1 = the value of the initial term n = the number of terms d = the common difference between terms

VOLUME AND SURFACE AREA

M*o***metrix** test preparation

12

5-12-13

4

3-4-5

leg

b

SOHCAHTOA

STATISTICS

MØmetrix test preparation

Need more resources? Scan the QR codes below to check out test prep materials from Mometrix that are specifically designed to help you ace the ACT.

You can also visit <u>https://www.mometrix.com/academy/act-practice-test/</u>to take a ACT practice test.

