PERCENTS, FRACTIONS, AND DECIMALS

RATIOS AND PROPORTIONS

Ratios								
	Part to part		Part to whole					
	2:1	1:2	<mark>2:</mark> 3	1:3				
	2/1	1/2	<mark>2</mark> /3	1/3				
	2 to 1	1 to 2	2 to 3	1 to 3				

Proportions						
	<mark>3</mark> :4	=	<mark>6</mark> :8			
	<mark>3</mark> :4	::	<mark>6</mark> :8			
	3 is to 4	as	<mark>6</mark> is to 8			

METRIC CONVERSIONS

Metric units are multiples of 10s. To convert to a larger unit, divide numbers by base of 10s. To convert to a smaller unit, multiply numbers by base of 10s.

M*[®]***metrix** test preparation

METRIC UNITS OF DISTANCE METRIC UNITS OF VOLUME 1 kilometer (km) = 1,000 meters (m)1 liter (L) = 1,000 milliliters (mL)1 meter (m) = 100 centimeters (cm)1 milliliter (mL) = 1 cubic centimeter (cm³) 1 centimeter (cm) = 10 millimeters (mm) TIME CONVERSIONS METRIC UNITS OF MASS 1 minute = 60 seconds1 kilogram (kg) = 1,000 grams (g)1 hour = 60 minutes $1 \operatorname{gram}(q) = 1,000 \operatorname{milligrams}(mq)$ 1 day = 24 hours1 week = 7 daysConvert 12 kilometers to centimeters 1 year \approx 52 weeks 1 year = 365 days12 kilometers $\times \frac{1000 \text{ m}}{1 \text{ km}} \times \frac{100 \text{ cm}}{1 \text{ m}} = 1,200,000 \text{ cm}$ (366 in leap year) **STATISTICS** Median Mean Range (Spread) Mode

Mometrix test preparation

SLOPE AND LINEAR EQUATIONS

Slope $\frac{y_2 \cdot y_1}{x_2 \cdot x_1} = \frac{rise}{run}$				
y = mx + b	$d = (x_2 - x_1)^2 + (y_2 - y_1)^2$			
m = slope b = y-intercept				
Point-Slope Form	Midpoint Formula			
$y - y_1 = m(x - x_1)$ m = slope (x_1, y_1) = point coordinates	$\frac{x_1 + x_2}{2}$, $\frac{y_1 + y_2}{2}$			

y

MOmetrix TEST PREPARATION

GRAPHING LINEAR EQUATIONS

SYSTEMS OF EQUATIONS

CHARTS

Mometrix test preparation

VOLUME AND SURFACE AREA

MOmetrix TEST PREPARATION

MØmetrix test preparation

5-12-13

3-4-5

b

CHOSHACAO

TRIGONOMETRY

Need more resources? Scan the QR codes below to check out test prep materials from Mometrix that are specifically designed to help you ace the SAT.

You can also visit <u>https://www.mometrix.com/academy/sat-practice-test/ t</u>o take a SAT practice test.

