NUMBER CLASSIFICATION

A rational number is also a real number, a real number is also a complex number, etc.

Number Class	Definition	Examples
Natural numbers	The number 1 or any number obtained by adding 1 to it one or more times.	1, 2, 3, 4, 5,
Whole Numbers	Whole numbers do not include fractions or decimal parts and is a positive integer or zero.	0, 1, 2, 3, 4, 5,
Integers	Any whole number or its opposite.	, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5,
Rational numbers	A number can that be expressed as a ratio or fraction.	• 2/10.6 • 3/10 • 2.957
Real Numbers	A number that has no imaginary part. All real numbers can be located on a number line.	• -92 • 5/9 • √2
Complex Numbers	a + bi where a and b are real numbers and i (imaginary number) is a formal square root of -1 ($i = \sqrt{-1}$, $i^2 = -1$)	 -1 + 2i 7 - 9i -6i

NUMBER LINES

Standard Number Line

Number lines may have a point for zero and may show negative numbers on the left side of the line.

Any positive numbers are placed on the right side of the line.

Absolute Value

Absolute value is the distance away from zero a number is on the number line. It is always positive and is written |x|.

For example, the absolute value of 2 is written as |2|.

MATHEMATICAL SYMBOLS

Phrase	Symbol
equal, is, was, will be, has, costs, gets to, is the same as, becomes	=
times, of, multiplied by, product of, twice, doubles, halves, triples	×
divided by, per, ratio of/to, out of	÷
plus, added to, sum, combined, and, more than, totals of	+
subtracted from, less than, decreased by, minus, difference between	-
what, how much, original value, how many, a number, a variable	<i>x</i> , <i>n</i> , etc.

Lesser Known Symbols

The Golden Ratio: φ Inifinity: ∞ Euler's Number: e Universal Quantifier: ∀ Membership Sign: ∈

FACTORS

What is a factor?

A whole number is a factor of another whole number if it divides it evenly.

Greatest common factor (GCF)

The greatest common factor of two or more whole numbers is the largest number that is a factor of them all. 7: 1, 7 28: 1, 2, 7, 14 GCF: 7

MULTIPLES

What is a multiple?

A whole number is a multiple if it is the result of multiplying another whole number by an integer.

Least Common Multiple (LCM)

The least common multiple of two or more whole numbers is the smallest number that is a multiple of them all. 3: 3, 6, 9, 12, 15, 18, <mark>21,</mark> 24 7: 7, 14, <mark>21,</mark> 28, 35, 42, 49, 56 LCM: **21**

Multiples of 3

×	1	2	3	4	5	6	7	8	multiplication
1	1	2	3	4	5	6	7	8	3 × 1 = 3
2	2	4	6	8	10	12	14	16	3 × 2 = 6
3	3	6	9	12	15	18	21	24	3 × 3 = 9
4	4	8	12	16	20	24	28	32	3 × 4 = 12
5	5	10	15	20	25	30	35	40	3 × 5 = 15
6	6	12	18	24	30	36	42	48	3 × 6 = 18
7	7	14	21	28	35	42	49	56	3 × 7 = 21
8	8	16	24	32	40	48	56	64	3 × 8 = 24

Multiples of 7

×	1	2	3	4	5	6	7	8	multiplication
1	1	2	3	4	5	6	7	8	7 × 1 = 7
2	2	4	6	8	10	12	14	16	7 × 2 = 14
3	3	6	9	12	15	18	21	24	7 × 3 = 21
4	4	8	12	16	20	24	28	32	7 × 4 = 28
5	5	10	15	20	25	30	35	40	7 × 5 = 35
6	6	12	18	24	30	36	42	48	7 × 6 = 42
7	7	14	21	28	35	42	49	56	7 × 7 = 49
8	8	16	24	32	40	48	56	64	7 × 8 = 56

RATIOS

Ratios of Two Items

Items	Ratio	Fraction	Written	Simplified Ratio
6 oranges, 8 apples	6:8	⁶ /8	6 oranges to 8 apples	3:4
8 trains, 14 cars	8:14	8/14	8 trains to 14 cars	4:7
4 feet, 3 feet	4:3	4⁄3	4 feet to 3 feet	4:3

SCIENTIFIC NOTATION

The coefficient must be greater than or equal to 1 and less than 10

Scientific Notation	Moving The Decimal	New Number
1 × 10°	1	1
1.3 × 10 ¹	1.3	13
1.34 × 10 ²	1.34	134
7.38 × 10 ⁹	7.38000000	7,380,000,000
1 × 10⁻¹	01.	0.1
1 × 10 ⁻²	001.	0.01
5.5 × 10 ⁻⁷	0000005.5	0.0000055

RULES OF EXPONENTS

Property	Description
$a^1 = a$	Any number to the power of 1 is equal to itself
$1^n = 1$	The number 1 raised to any power is equal to 1
$a^{0} = 1$	Any number raised to the power of 0 is equal to 1
$a^n \times a^m = a^{n+m}$	Add exponents to multiply powers of the same base number
$a^n \div a^m = a^{n - m}$	Subtract exponents to divide powers of the same base number
$(a^n)^m = a^{n \times m}$	When a power is raised to a power, the exponents are multiplied
$(a \times b)^n = a^n \times b^n$	Multiplication operations inside parentheses can be raised to a power
$(a \div b)^n = a^n \div b^n$	Division operations inside parentheses can be raised to a power
$a^{-n} = 1/a^n$	A negative exponent is the same as the reciprocal of a positive exponent

SLOPE AND LINEAR EQUATIONS

Slo $\frac{y_2 - y_1}{x_2 - x_1}$	ppe = <u>rise</u> <u>run</u>
Slope Intercept Form y = mx + b m = slope b = y-intercept	Distance Formula $d = (x_2 - x_1)^2 + (y_2 - y_1)^2$
Point-Slope Form $y - y_1 = m(x - x_1)$ m = slope $(x_1, y_1) = \text{point coordinates}$	Midpoint Formula $\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}$

Negative Slope $m = \frac{-2 - 3}{3 - (-2)} = \frac{-5}{5}$ m = -1

GRAPHING LINEAR EQUATIONS

SYSTEMS OF EQUATIONS

Consistent Dependent

VOLUME AND SURFACE AREA

CHARTS

FUNCTIONS

Function	Formula
Constant Functions	f(x) = a
The Identity Function	f(x) = x
Linear Functions	f(x) = ax + b
The Squaring Function	$f(x) = x^2$
Quadratic Functions	$f(x) = ax^2 + bx + c$
Polynomial Functions	$f(x) = a^{n}x^{n} + a^{n-1}x^{n-1} + \dots + a_{2}x^{2} + a_{1}x + a_{0}$
Rational Functions	f(x) = P(x)/Q(x)
The Square Root Function	$f(x) = \sqrt{x}$

A function is a relation between a set of inputs and a set of outputs where each input is related to exactly one output.

QUADRATIC EQUATION

An equation where the variable xrepresents an unknown number, and a, b, and c represent known numbers, where $a \neq 0$

Quadratic Formula: Standard Form

 $ax^2 + bx + c = 0$

Quadratic Formula: Equivalent Form

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

POLYNOMIALS

Polynomials are mathematical expressions consisting of variables, coefficients, and constants combined using addition, subtraction, and multiplication.

Polynomial Type	olynomial Type Number of Terms	
Monomial	One term	$5x^{3}$
Binomial	Two terms	<i>x</i> + 2
Trinomial	Three terms	$x^2 + 3x - 4$

PERMUTATION AND COMBINATION

n = the number of objects availabler = the number of objects selected

Permutation An arrangement of a specific number of a set of objects in a specific order.

$$_{n}P_{r}=\frac{n!}{(n-r)!}$$

Combination No restrictions regarding the order of the elements.

 $_{n}C_{r} = \frac{n!}{r!(n-r)!}$ $_{n}C_{r} = \frac{n^{P}r}{r!}$

Need more resources? Scan the QR codes below to check out test prep materials from Mometrix that are specifically designed to help you ace the GED.

You can also visit <u>https://www.mometrix.com/academy/ged-practice-test/</u> to take a GED practice test.

