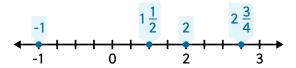
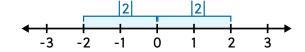
NUMBER CLASSIFICATION


Rational Numbers Integers Whole numbers Natural numbers

Each number system is a subset another.

A rational number is also a real number, a real number is also a complex number, etc.

Number Class	Definition	Examples
Natural numbers	The number 1 or any number obtained by adding 1 to it one or more times.	1, 2, 3, 4, 5,
Whole Numbers	Whole numbers do not include fractions or decimal parts and is a positive integer or zero.	0, 1, 2, 3, 4, 5,
Integers	Any whole number or its opposite.	, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5,
Rational numbers	A number can that be expressed as a ratio or fraction.	• 2/10.6 • 3/10 • 2.957
Real Numbers	A number that has no imaginary part. All real numbers can be located on a number line.	• -92 • 5/9 • √2
Complex Numbers	$a + bi$ where a and b are real numbers and i (imaginary number) is a formal square root of -1 ($i = \sqrt{-1}$, $i^2 = -1$)	-1 + 2i7 - 9i-6i


NUMBER LINES

Standard Number Line

Number lines may have a point for zero and may show negative numbers on the left side of the line.

Any positive numbers are placed on the right side of the line

Absolute Value

Absolute value is the distance away from zero a number is on the number line. It is always positive and is written

For example, the absolute value of 2 is written as |2|.

MATHEMATICAL SYMBOLS

Phrase	Symbol
equal, is, was, will be, has, costs, gets to, is the same as, becomes	=
times, of, multiplied by, product of, twice, doubles, halves, triples	×
divided by, per, ratio of/to, out of	÷
plus, added to, sum, combined, and, more than, totals of	+
subtracted from, less than, decreased by, minus, difference between	-
what, how much, original value, how many, a number, a variable	<i>x</i> , <i>n</i> , etc.

Lesser Known Symbols

The Golden Ratio: φ Inifinity: ∞ Euler's Number: e Universal Quantifier: ∀ Membership Sign: ∈

PERCENTS, FRACTIONS, AND DECIMALS

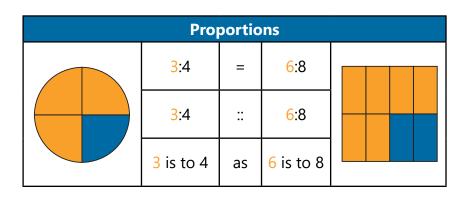
Percent Increase new value – original value $\times 100$ original value

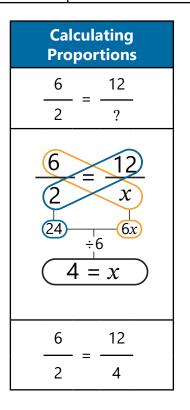
Percent Decrease original value – new value × 100 original value

Percent to Fraction/Decimal Percentage 100

Fraction to Decimal numerator

Fraction to Percent numerator denominator denominator


Decimal to Fraction $\frac{\text{decimal}}{1} \times \frac{10^n}{10^n}$ -n is the number of places behind **Decimal to Percent** decimal × 100


RATIOS AND PROPORTIONS

Ratios of Two Items

Items	Ratio	Fraction	Written	Simplified Ratio
6 oranges, 8 apples	6:8	6/8	6 oranges to 8 apples	3:4
8 trains, 14 cars	8:14	8/14	8 trains to 14 cars	4:7
4 feet, 3 feet	4:3	4/3	4 feet to 3 feet	4:3

Ratios					
	Part to	part	Part to	whole	
	2:1	1:2	2:3	1:3	
	2/1	1/2	<mark>2</mark> /3	1/3	
	2 to 1	1 to 2	2 to 3	1 to 3	

FACTORS

What is a factor?

A whole number is a factor of another whole number if it divides it evenly.

Greatest common factor (GCF)

The greatest common factor of two or more whole numbers is the largest number that is a factor of them all.

7: 1, 7

28: 1, 2, 7, 14

GCF: 7

Factor Tree

MULTIPLES

What is a multiple?

A whole number is a multiple if it is the result of multiplying another whole number by an integer.

Least Common Multiple (LCM)

The least common multiple of two or more whole numbers is the smallest number that is a multiple of them all.

3: 3, 6, 9, 12, 15, 18, 21, 24 7: 7, 14, 21, 28, 35, 42, 49, 56

LCM: 21

Multiples of 3

×	1	2	3	4	5	6	7	8	multiplication
1	1	2	3	4	5	6	7	8	3 × 1 = 3
2	2	4	6	8	10	12	14	16	3 × 2 = 6
3	3	6	9	12	15	18	21	24	3 × 3 = 9
4	4	8	12	16	20	24	28	32	3 × 4 = 12
5	5	10	15	20	25	30	35	40	3 × 5 = 15
6	6	12	18	24	30	36	42	48	3 × 6 = 18
7	7	14	21	28	35	42	49	56	3 × 7 = 21
8	8	16	24	32	40	48	56	64	3 × 8 = 24

Multiples of 7

×	1	2	3	4	5	6	7	8	multiplication
1	1	2	3	4	5	6	7	8	7 × 1 = 7
2	2	4	6	8	10	12	14	16	7 × 2 = 14
3	3	6	9	12	15	18	21	24	7 × 3 = 21
4	4	8	12	16	20	24	28	32	7 × 4 = 28
5	5	10	15	20	25	30	35	40	7 × 5 = 35
6	6	12	18	24	30	36	42	48	7 × 6 = 42
7	7	14	21	28	35	42	49	56	7 × 7 = 49
8	8	16	24	32	40	48	56	64	7 × 8 = 56

PERMUTATION AND COMBINATION

Permutation

An arrangement of a specific number of a set of objects in a specific order.

$$_{n}P_{r}=\frac{n!}{(n-r)!}$$

Combination

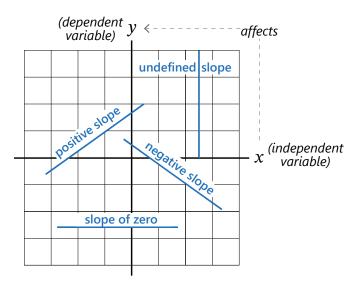
No restrictions regarding the order of the elements.

$$_{n}C_{r}=\frac{n!}{r!(n-r)!}$$
 $_{n}C_{r}=\frac{_{n}P_{r}}{r!}$

$$_{n}C_{r}=\frac{^{n}C_{r}}{r!}$$

n = the number of objects available r = the number of objects selected

SCIENTIFIC NOTATION


The coefficient must be greater than or equal to 1 and less than 10

Scientific Notation	Moving The Decimal	New Number
1 × 10°	1	1
1.3 × 10 ¹	1.3	13
1.34 × 10 ²	1.34	134
7.38 × 10 ⁹	7.38000000	7,380,000,000
1 × 10 ⁻¹	01.	0.1
1 × 10 ⁻²	001.	0.01
5.5 × 10 ⁻⁷	0000005.5	0.00000055

RULES OF EXPONENTS

Property	Description
$a^1 = a$	Any number to the power of 1 is equal to itself
$1^n = 1$	The number 1 raised to any power is equal to 1
$a^{0} = 1$	Any number raised to the power of 0 is equal to 1
$a^n \times a^m = a^{n+m}$	Add exponents to multiply powers of the same base number
$a^n \div a^m = a^{n-m}$	Subtract exponents to divide powers of the same base number
$(a^n)^m = a^{n \times m}$	When a power is raised to a power, the exponents are multiplied
$(a \times b)^{n} = a^{n} \times b^{n}$	Multiplication operations inside parentheses can be raised to a power
$(a \div b)^{n} = a^{n} \div b^{n}$	Division operations inside parentheses can be raised to a power
$a^{-n} = 1/a^n$	A negative exponent is the same as the reciprocal of a positive exponent

SLOPE AND LINEAR EQUATIONS

Slope
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{rise}{run}$$

Slope Intercept Form
$$y = mx + b$$

$$m = slope$$

$$b = y-intercept$$

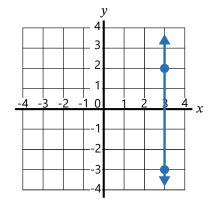
Distance Formula
$$d = (x_2 - x_1)^2 + (y_2 - y_1)^2$$

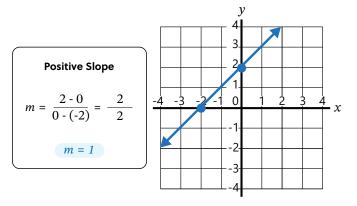
$$Midpoint Formula$$

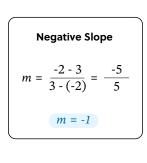
$$y - y_1 = m(x - x_1)$$

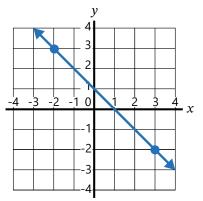
$$m = slope$$

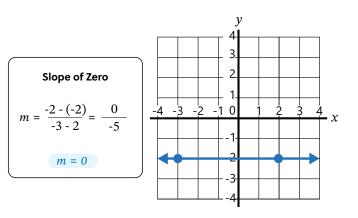
$$x_1 + x_2$$

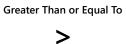

$$y_1 + y_2$$


$$x_2 - y_1 + y_2$$


m = slope $(x_1, y_1) = \text{point coordinates}$

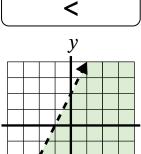

Undefined Slope
$$m = \frac{-3 - 2}{3 - 3} = \frac{-5}{0}$$


$$m = undefined$$


GRAPHING LINEAR EQUATIONS

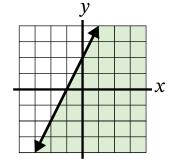
 \boldsymbol{x}

Greater Than


>

y

≥


y

Less Than

Less Than or Equal To

 \leq

$$y > 2x + 2$$

$$y \ge 2x + 2$$

$$y < 2x + 2$$

$$y \le 2x + 2$$

SYSTEMS OF EQUATIONS

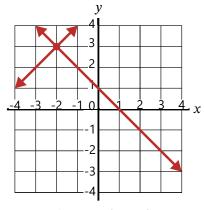
One Solution

$$y = -x + 1$$

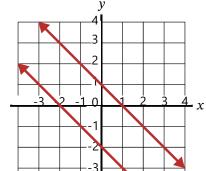
$$y = x + 5$$

No Solutions

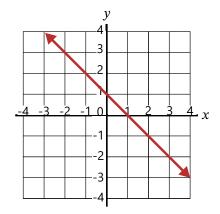
x


$$y = -x + 1$$

$$y = -x - 2$$


Infinitely Many Solutions

$$y = -x + 1$$


$$3y = -3x + 3$$

Consistent Independent

Inconsistent

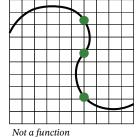
Consistent Dependent

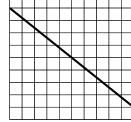
QUADRATIC EQUATION

An equation where the variable xrepresents an unknown number, and a, b, and c represent known numbers, where $a \neq 0$

Quadratic Formula: Standard Form

$$ax^2 + bx + c = 0$$


Quadratic Formula: Equivalent Form


$$x = \frac{-\mathbf{b} \pm \sqrt{\mathbf{b}^2 - 4a\mathbf{c}}}{2a}$$

FUNCTIONS

Function	Formula
Constant Functions	f(x) = b, where the slope is zero
The Identity Function	f(x) = x, where the output value and input value are the same and the line passes through the origin
Linear Functions	f(x) = mx + b
The Squaring Function	$f(x) = x^2$, where the vertex is at the origin
Quadratic Functions	$f(x) = ax^2 + bx + c$
Polynomial Functions	$f(x) = a^n x^n + a^{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$
Rational Functions	$f(x) = P(x)/Q(x)$, where $p(x)$ and $q(x)$ are polynomials and $q(x) \neq 0$
The Square Root Function	$f(x) = \sqrt{x}$

A function is a relation between a set of inputs and a set of outputs where each input is related to exactly one output.

Composites

The composite of two functions *f* and g, simply means that the output of the second function is used as the input of the first.

$$\begin{cases} (f \circ g)(x) = f(g(x)) \\ \text{and} \\ (g \circ f)(x) = g(f(x)) \end{cases}$$

It's important to note that the process is not always commutative like addition or multiplication expressions. It can be commutative, but most often this is not the case.

f(x) = 5x + 4			
f(g(x))	= f(x-2)		
	= 5(x-2) + 4		
	= 5x - 10 + 4		
	= 5x - 6		

g(x) = x - 2			
g(f(x))	=g(5x+4)		
	=(5x+4)-2		
	= 5x - 2		

Transformations of Functions

Function Notation	Transformation Types	Coordinate Point Change
f(x) + d	vertical translation up d units	$(x,y) \to (x,y+d)$
f(x) - d	vertical translation down \emph{d} units	$(x,y) \to (x,y-d)$
f(x+c)	horizontal translation left c units	$(x,y) \rightarrow (x - c,y)$
f(x - c)	horizontal translation right c units	$(x,y) \rightarrow (x+c,y)$
-f(x)	reflect over x-axis	$(x,y) \to (x,-y)$
f(-x)	reflect over y-axis	$(x,y) \to (-x,y)$

MATRICES

Matrix Definition

A matrix (plural: matrices) is a rectangular array of numbers or variables, often called elements, which are arranged in columns and rows

Scalar A number

Vector A list of numbers

 $\begin{bmatrix} 3 \\ -2 \\ 11 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \\ 2 & 3 & 4 \\ 0 & -2 & 5 \\ 10 & 11 & 8 \end{bmatrix}$

Matrix An array of numbers

Matrix Addition or Subtraction

$$n\begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix} \pm \begin{bmatrix} g & h \\ i & j \\ k & l \end{bmatrix} = \begin{bmatrix} a \pm g & b \pm h \\ c \pm i & d \pm j \\ e \pm k & f \pm l \end{bmatrix} \qquad n\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} = \begin{bmatrix} na & nb & nc \\ nd & ne & nf \end{bmatrix}$$

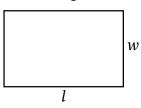
Scalar Multiplication

$$n \left[\begin{array}{ccc} a & b & c \\ d & e & f \end{array} \right] = \left[\begin{array}{ccc} na & nb & nc \\ nd & ne & nf \end{array} \right]$$

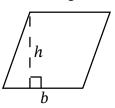
Matrix Multiplication

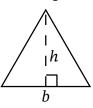
$$\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \begin{bmatrix} g & h \\ i & j \\ k & l \end{bmatrix} = \begin{bmatrix} ag + bi + ck & ah + bj + cl \\ dg + ei + fk & dh + ej + fl \end{bmatrix}$$

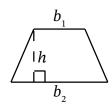
ADDITIONAL FORMULAS


Formula Name	Formula
Simple Interest	I = Prt ($I = interest, P = principal, r = rate, t = time$)
Distance Formula	d = rt ($d = $ distance, $r = $ rate, $t = $ time)
Total Cost	total cost = (units) × (unit price)
Geometric Sequence	$a_n = a_1 \times r^{n-1}$ $a_n = $ the value of the nth term $a_1 = $ the value of the initial term $r = $ the common ratio $n = $ the number of terms
Arithmetic Sequence	$a_n = a_1 + (n-1)d$ $a_n = $ the value of the nth term $a_1 = $ the value of the initial term $n = $ the number of terms $d = $ the common difference between terms

AREA


Square


Rectangle


Parallelogram

Triangle

Trapezoid

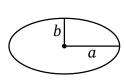
$$A = l^2$$

$$A = lw$$

$$A = bh$$

$$A = \frac{1}{2}bh$$

$$A = \frac{1}{2}(b_1 + b_2)h$$


Rhombus

Circle

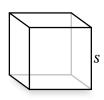
Ellipse

Perimeter

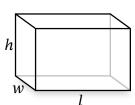
The sum of all sides of a shape

Circumference

The distance around a circle ($C=2\pi r$)

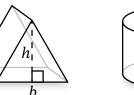

 $A = \frac{1}{2} \left(\mathbf{d}_1 \times \mathbf{d}_2 \right)$

 $A = \pi r^2$


 $A = \pi ab$

VOLUME AND SURFACE AREA

Cube



Rectangular Prism

Triangular Prism

Cylinder

Cone

 $V = s^3$

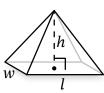
 $V = l \times w \times h$

 $V = \frac{b \times h \times l}{2}$

 $V = \pi r^2 h$

 $V = \frac{\pi r^2 h}{3}$

 $SA = 6s^2$


SA = 2(lw + lh + hw)

SA = lsa + 2 (area of base)

 $SA = 2\pi r(r + h)$

 $SA = \pi rs + \pi r^2$

Rectangular Pyramid

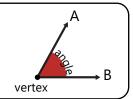
Sphere

 $V = \frac{4}{3} \pi r^3$

SA = lsa + area of base

 $SA = 4\pi r^2$

LSA (Lateral Surface Area)


The sides of a three-dimensional shape, excluding any bases

The face of a shape perpendicular to the direction height is measured

ANGLES

An angle is formed when two lines or line segments meet at a point

A vertex is the point at which two segments or rays meet to form an angle.

Complementary

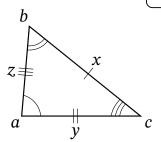
Two angles whose sum is exactly 90°

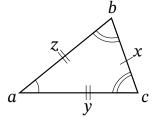
Supplementary

Two angles whose sum is exactly 180°

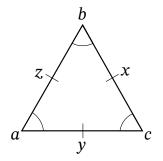
Adjacent

Two angles that have the same vertex and share a side

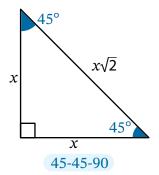

Vertical

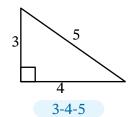

Angles that are not adjacent due to sharing a vertex and have no common side

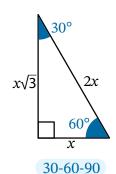
TRIANGLES

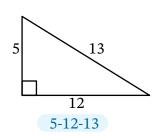

The sum of the interior angles of any triangle is always 180 degrees.

Scalene TriangleNo equal side lengths or angles

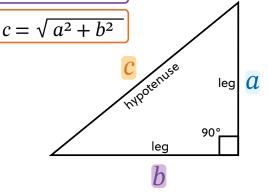



Isosceles Triangle
Two equal side lengths and angles




Equilateral TriangleThree equal side lengths and angles

Special Right Triangles



Pythagorean Theorem

$$c^2 = a^2 + b^2$$

$$a = \sqrt{c^2 - b^2}$$

$$b = \sqrt{c^2 - a^2}$$

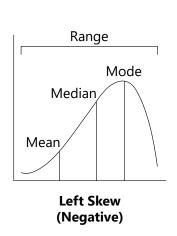
TRIGONOMETRY

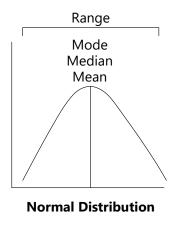
SOHCAHTOA

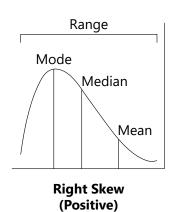
SOH	sin(θ)= -	opposite opposite
		h ypotenuse
САН	c os(θ) = -	a djacent
		h ypotenuse
TOA	tan(θ) = -	pposite
		a djacent

CHOSHACAO

СНО	σ ςς(Ω) –	hypotenuse
СНО	c sc(θ)= -	opposite -
SHA	s ec(θ) = -	h ypotenuse
		a djacent
CAO	c ot(θ) = -	a djacent
		•pposite


STATISTICS

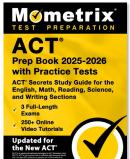

Mean sum of all items total number of items


Range (Spread) Distance between smallest and largest item

Mode Most/common item

MedianMiddle item when ordered from least to greatest

Greater spread equals greater deviation.


Margin of Error

sample statistic ± margin of error with confidence level of XX%

Need more resources? Scan the QR codes below to check out test prep materials from Mometrix that are specifically designed to help you ace the ACT.

You can also visit https://www.mometrix.com/academy/act-practice-test/ to take a ACT practice test.

ACT Study Guide

ACT Flashcards

1,500+ Practice Questions

300+ Review Videos

80+ Study Lessons

360+ Flashcards

Get 20% Off
Online ACT Course
Use Code: ACT20