SCIENTIFIC NOTATION

Scientific notation is simply a more efficient way to write numbers that are very large or very small. It's efficient because it shows magnitude very easily and usually eliminates a lot of zeroes.

Standard Form_→_Scientific Notation

EXAMPLE: 5,878,600,000,000

Step 1	Step 2
Change the number to a decimal between 1 and 10.	Because the decimal was moved to the left 12 times, multiply the new number by 10 to the power of 12.
5,878,600,000,000 becomes 5.878600000000	5.87860000000 becomes 5.8786 •10 ¹²

These steps can also be applied when working with a small number. If you want to change 0.00000055 to scientific notation, change the number to be between 1 and 10 (5.5). Then, because the decimal was moved 7 places to the right, we multiply by 10⁻⁷ to get 5.5·10⁻⁷.

Scientific Notation → **Standard Form**

EXAMPLE 1: 7.38 · 10 ⁹

Because the exponent is **positive**, move the decimal **to the right** the same number of times as the exponent (9 times in this case). 7.38

7.30 becomes 7,380,000,000

EXAMPLE 2: 5.76•10-8

Because the exponent is **negative**, move the decimal **to the left** the same number of times as the exponent (8 times in this case).

5.76 becomes 0.000000576

