EXPONENTS

Exponents are used in math to signify repeated multiplication. They are written as superscript numbers to the right side of the base:

base exponent

<u>Multiplication</u>	<u>Exponents</u>
$2 \cdot 3 = 2 + 2 + 2 = 6$	$2^3 = 2 \cdot 2 \cdot 2 = 8$
The 3 specifies how many times to add 2 to itself.	The 3 specifies how many times to multiply 2 by itself.

Bases that are **variables**, such as x or y, are treated the same way:

$$x \cdot x \cdot x \cdot x = x^4$$

In more complex equations, pay attention to how terms are **grouped**, because it will affect the outcome. The **order of operations** will also determine the outcome.

$7 + 3^3 = 7 + (3 \cdot 3 \cdot 3) = 7 + 27 = 34$ while $(7 + 3)^3 = 10^3 = 10 \cdot 10 \cdot 10 = 1,000$	- Exponents, then addition ————————————————————————————————————
$-5^{2} = -1 \cdot 5^{2} = -1 \cdot 5 \cdot 5 = -25$ while $(-5)^{2} = (-1 \cdot 5)^{2} = (-1 \cdot 5) \cdot (-1 \cdot 5) = 25$	- Exponents, then multiplication ————————————————————————————————————
$y - 4^2 = y - 16$ while $(y - 4)^2 = (y - 4) \cdot (y - 4) = y^2 - 8y + 16$	- Exponents, then subtraction ————————————————————————————————————

